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Abstract

A new form of the Marcum Q-function is presented that has both computational
and analytical advantages. The new form is particularly useful in simplifying and
rendering more accurate the analysis of the error probability performance of
uncoded and coded partially coherent, differentially coherent, and noncoherent
communication systems in the presence of fading. It also enables simple upper and
lower bounds to be found analogous to the Chernoff bound on the Gaussian Q-
function.
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Jet Propulsion Laboratory.



A New Twist on the Marcum Q-Function
and its Application

Marvin K. Simon

1. Introduction

In a recent paper [1]. a particular form of the Gaussian probability integral Q(x)
developed a number of years ago by Craig [21 was used to simplify and render more
accurate a number of performance results related to communication problems
dealing with coherent detection, in particular, those where the argument of Q(x) is
dependent on random system parameters and thus requires averaging over the
statistics c)f these parameters. More specifically, Craig showed that the Gaussian
probability function could be expressed as the definite integral

(1)

which, in addition to the advantage of having finite integration limits, had its
argument contained in the in tegra d rather than in the in tegrat ion Iimifs as in the
traditional definition of the function. By noting that the integrand has its
maximum value when O = 7r/2,  then, replacing the integrand by its maximum
value one readily obtains the well-known upper bound on Q(x), namely,

Q(x) S +exp(-x’  /2) (2)
which ‘is in the form of a Chernoff  bound. Comparing (1) with (2), it was further
shown in [1] that the form of Eq. (1) allowed manipulations akin to those afforded by
the Chernoff  bound in (2) but without the necessity of invoking such a bound.

Motivated by Craig’s work, we set out to see if a similar form could be
obtained for the Marcum Q-function [3] which is common in performance results
for communication problems related to partially coherent, differentially coherent,
and noncoherent communications [4-7]. This paper develops such a desirable form
and then discusses how it might be applied.

2. A New Form of the Generalized Marcum O-Function

The generalized Marcum Q-function is defined by the integral
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Q&@)  =  -++” exP[-(x2 ;a2)])M_,(@& (3)

which also has the series form [5,6]

where ~~a/ p. The reason for introducing the parameter ~ to represent the ratio of
the variables of the Marcum Q-function will be explained later on when dealing
with the applications. The modified Bessel function of kth order can be expressed
as the integral [8]

~k(z)=~~~x(-j~-’e~e-’’h’~~ (5)

where j= ~ and it is clear that the imaginary part of the right hand side of (5)
must be equal to zero (since I,(z)  is a real function of the real argument z.) Using
(5) in (4) and noting from the inequality on the arguments of the Marcum Q-
function given in (1) that 0< ~ <1, we obtain

where we have also used the fact that ~~(~’~) = Z_~(~2~).  Rationalizing the
denominators of the complex factors between brackets of the integrand and
recognizing again that the imaginary part of the results must result in a zero integral
(since Q(a,@ is real), gives after much simplification the desired form

1 x (-l)+ ~-(M-l)(cos(M - 1 ) 6 +  ysin MO)
~[Q.(cLP)  =  ~ _x

] (

D’
l+2~sin O+~2 )

exp –---[ l+2~sin8+~2]  dd,

(=a/fJ-=1, Modd

[

1  z (-l)y~-(M-’)(sin(M – 1)0 - ~coskfe)
QM(@P) = ~j_x

] ( )
exp -$[l+2~sinO+(21  dO,

l+2~sin0+~2

g=a/9<1,  Meven
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(7)
which has the popular special case (M= 1)

(8)
For the case a 2/32  O, the appropriate series form is [5,6]

(9)
whereupon an analogous development would yield the result

[ ](1 ~ (–l)*~”(sin MO + ~cos(M  – 1)0) ~xp _ a’
QJa#)=l+y-j..

l+2~sinfl+~2
---[1+ 2~sin9+ c2]~0,

~=p/a<l, Meven
(lo)

and where now ~ ~ ~/ a <1. Once again the special case of M = 1 becomesl

We note that similar to (l), the expression in (7) (or (10)) is a single integral
with finite limits and an integrand that is bounded and well-behaved over the
interval –ns @s n and is exponential (Gaussian) in one of the arguments. Aside
from its analytical desirability in the applications to be discussed next, the form of (7)
(or (10)) is also computationally  desirable relative to other methods [9,10] previously
reported in the literature for numerically evaluating the Marcum Q- function.

Simple upper and lower bounds on Q1 (a, /3) can be obtained in the same
manner that (2) was obtained from (1). In particular, for P > a 20, we observe that
llt ~i~h~ ~ppcar  from (11) that the Marcum.Q  function can exceed unity.  However, the integral

in (11) is always less than or equal to zero. Furthermore, the special case of a = ~ has the closed

form result Ql(a, a) = [1 + exp(–a2)~o(a2)]/2 116~ % (A-3-2 )10
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the maximum and minimum of the integrand in (8) occurs for O = --n/2 and
O = Z/ 2 respectively. Thus, replacing the integrand by its maximum and minimum
values leads to the upper and lower “Chernoff-type” bounds

(12)

which is asymptotically tight as a + O.

For a > p 20, the integrand in (11) has a minimum at O = –n/2  and a
maximum at O = z/2.  Since the maximum of the integrandJ namelYz
(</(1 + J))exp(-a’(1 + 02 /2), is always positive, then the upper bound obtained bY
replacing the integrand by this value would exceed unity and hence be useless. On
the other hand, the minimum of the integrand, namely, –(~/(1 – c))exP(–a2(l  – [)2 /2)
is always negative, Hence, a lower “CherncJff-type”  bound on Q1 (a, ~) is given by

(13)

We now proceed to briefly discuss the application of this new form of the
Marcum Q- function to communication problems where a and ~ are both
proportional to the square root of signal-to-noise ratio (SNR) but their ratio, i.e., ~,
is independent of SNR.

3. Error 1’robabilitY  Performance of Binary Communications in the~resence of
Fading  Amplitudes

Many problems dealing with the error probability performance of partially coherent,
differentially coherent, and noncoherent detection of PSK and FSK signals in
additive white Gaussian noise (AWGN) have an error probability expression of the
form [4-7]

[2 1
P(E) = #1 - Q(fi,@ + Q(~,@] = Q(&,@ - ~exp -A(u + b) 1.(6) (14)

where a, b are each proportional to SNR with b > a. In view of (8) and (11), the error
probability in (14) can be expressed as the single integral
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Again note that the maximum and minimum of the integrand in (15) occurs for
O = –n / 2 and 9 = ZI 2 respectively. Thus, replacing the integrand by its maximum
and minimum values leads to the simple upper and lower bounds

(16)

To evaluate the average error probability performance of such systems in the
presence of slow fading, one would multiply the arguments &,~ in the Marcum
Q-functions of (14) by the normalized (unit power) fading parameter p and then
average the resulting conditional (on p) error probability expression over the
probability density function (pdf) of p, namely, pP (p). Using the form of the error
probability in (15) with b replaced by p2b, then since the integral over p can in most
cases, e.g., Rayleigh, Rice, Nakagami fading, be evaluated in closed form, the
resulting error probability is in the form of a single integral with finite limits and an
integrand composed of elementary functions.

Without going into great detail (because of space limitation) suffice it to say
that the new representation of (7) and (10) allows for a unified approach to partially
coherent, differentially coherent, and noncoherent modulations communicated
over generalized fading single- and multi-channels. A complete and exhaustive
treatment of this entire subject will be presented in a forthcoming paper [13] by the
author and one of his colleagues. Furthermore, using the results introduced in [11,
the unified approach can also be made to include coherent systems [14]. As such, a
tutuorial/survey paper [15] has been written that will present a unified approach to
the performance analysis of digital communication over generalized fading
channels.
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